Ⅰ 防弹衣穿带方法求解
防弹衣(Bulletproof Vest),又叫避弹衣,避弹背心,防弹背心,避弹服,单兵护体装具等,用于防护弹头或弹片对人体的伤害。防弹衣主要由衣套和防弹层两部分组成。衣套常用化纤织品制作。防弹层是用金属(特种钢、铝合金、钛合金)、陶瓷片(刚玉、碳化硼、碳化硅、氧化铝)、玻璃钢、尼龙(PA)、凯夫拉(KEVLAR)、超高分子量聚乙烯纤维(DOYENTRONTEX Fiber)、液体防护材料等材料,构成单一或复合型防护结构。防弹层可吸收弹头或弹片的动能,对低速弹头或弹片有明显的防护效果,在控制一定的凹陷情况下可减轻对人体胸、腹部的伤害。防弹衣包括步兵防弹衣、飞行人员防弹衣和炮兵防弹衣等。按照外观还可分为防弹背心,全防护防弹衣,女士防弹衣等类型。
中文名
防弹衣
外文名
Bulletproof Vest
别 名
避弹衣
作 用
用于防护弹头或弹片对人体的伤害
组 成
衣套和防弹层
按外观分为
防弹背心,全防护防弹衣等
目录
1防弹性能
2服用性能
3防弹原理
4发展历程
5设计机理
6新型品种
7对付刀具
1防弹性能编辑
防弹衣是指“能吸收和耗散弹头、破片动能,阻止穿透,有效保护人体受防护部位的一种服装”。从使用看,防弹衣可分警用型和军用型两种。从材料看,防弹衣可分为软体、硬体和软硬复合体三种。软体防弹衣的材料主要以高性能纺织纤维的复合材料无纬布为主,这些高性能纤维远高于一般材料的能量吸收能力,赋予防弹衣防弹功能,并且由于这种防弹衣一般采用纺织品的结构,因而又具有相当的柔软性,称为软体防弹衣。硬体防弹衣则是以特种钢板、超强铝合金等金属材料或者氧化铝、碳化硅等硬质非金属材料为主体防弹材料,由此制成的防弹衣一般不具备柔软性,以插板形式为主。软硬复合式防弹衣的柔软性介于上述两种类型之间,它以软质材料为内衬,以硬质材料作为面板和增强材料,是一种复合型防弹衣。
作为一种防护用品,防弹衣首先应具备的核心性能是防弹性能。同时作为一种功能性服装,它还应具备一定的衣服用性能。
防弹衣的防弹性能主要体现在以下两个方面:
军、警用防弹衣(3张)
(1)防弹片:各种爆炸物如炸弹、地雷、炮弹和手榴弹等爆炸产生的高速破片是战场上的主要威胁之一。据调查,一个战场中的士兵所面临的威胁大小顺序是:弹片、枪弹、爆炸冲击波和热。所以,要十分强调防弹片的功能。
(2)防非贯穿性损伤:子弹在击中目标后会产生极大的冲击力,这种冲击力作用于人体所生产的伤害常常是致命的。这种伤害不呈现出贯穿性,但会造成内伤,重者危及生命。所以防止非贯穿性损伤也是体现和检验防弹衣防弹性能的一个重要方面。
2服用性能编辑
防弹衣的服用性能要求一方面是指在不影响防弹能力的前提下,防弹衣应尽可能轻便舒适,人在穿着后仍能较为灵活地完成各种动作。另一方面是服装对“服装-人体”系统的微气候环境的调节能力。对于防弹衣而言,则是希望人体穿着防弹衣后,仍能维持“人-衣”基本的热湿交换状态,尽可能避免防弹衣内表面湿气的积蓄而给人体造成闷热潮湿等不舒适感,减少体能的消耗。此外,由于其特殊的使用环境,防弹衣也要考虑到与其他武器装备的适配性。
3防弹原理编辑
美军当年在朝鲜战场上,由于装备了M52型尼龙防弹衣,挡住了当时 70%的直接命中的杀伤物,使胸、腹部的致死率降低65%,使总的减员率降低15 %。
据报道,1983年,一次5名美国海军陆战队员在贝鲁特街头巡逻时,突然遭到一枚手榴弹的袭击,由于当时他们都穿着“凯夫拉”防弹衣,手榴弹在他们附近爆炸,居然没有造成死亡和重伤,只有上、下肢轻伤。
以上统计和报道有力地证明了防弹衣的防护作用和防护效能。那么,防弹衣防弹的奥秘是什么呢? “硬铠甲”怎样防子弹?
70年代初后使用的如金属、防弹陶瓷、高性能复合材料板及非金属与金属或陶瓷的复合材料板等硬质材料防弹衣,其防弹机理主要是在受弹击时材料发生破碎、裂纹、冲塞以及多层复合板出现分层等现象,从而吸收射击弹大量的冲击能。当材料的硬度超过射击物的冲击能时,即可发生射击弹弹回现象而不贯穿。“软装甲”怎样防子弹?
若防弹衣采用高性能纤维如防弹尼龙、芳纶纤维、基纶纤维等软质材料时,其防弹机理主要是射击弹对纤维进行拉伸和剪切,同时,纤维将冲击能向冲击点以外的区域进行传播,能量被吸收掉而将破片或弹头裹在防弹层里。
试验表明,软质防弹衣有5种吸收能量的方式:⒈织物的拉伸变形:系指子弹入射方向的变形和入射点临近区域的拉伸变形;⒉织物的毁坏:包括纤维的原纤化、纤维的断裂、纱线结构的结体以及织物结构的解体;⒊热能:子弹的能量通过摩擦以热能方式散发;⒋声能:子弹撞击防弹层后发出的声音所消耗的能量; ⒌弹体的形变。复合“装甲”怎样防子弹?
应当指出的是,这种被称为“软装甲”的软质防弹衣无法阻止具有足够能量或较重的直射弹丸侵入人体,因此有必要附加坚硬的插板、陶瓷板或复合板,即软、硬质材料结合,将两种防护机理集成在一起,才能起到对人体的保护作用从而达到防弹的目的。这种软硬复合式防弹衣的防弹机理是这样的:当子弹击中防弹衣时,首先与防弹衣中第一道防线的防弹钢板或增强陶瓷板或复合板接触,在这接触的瞬间,子弹和硬质防弹材料都可能产生形变和断裂,于是,消耗了子弹大部分能量。而软质防弹材料作为第二道防线,吸收并扩散子弹剩余部分的能量,并起到缓冲作用,从而阻止并降低了贯穿性损伤。防弹衣怎么防弹片?
由于手榴弹、炸弹爆炸时产生的破片和弹片形状不规则,边缘锋利、体积小、质量轻,在击中防弹材料后特别是软体防弹材料后不变形,且量大密集,这时破片切割、拉伸防弹织物的纤维并使其断裂;破片也使织物内部纤维之间和织物不同层面之间相互作用,造成织物整体形变,在破片破坏防弹衣时,就消耗了自身的能量。同时,破片也有一小部分能量通过摩擦转化为热能,通过撞击转化为声能。于是防弹衣就阻止了手榴弹和炸弹的破片对胸腹部乃至颈部(高领防弹衣)的伤害。
4发展历程编辑
作为一种重要的个人防护装备,防弹衣经历了由金属装甲防护板向非金
防弹衣
属合成材料的过渡,又由单纯合成材料向合成材料与金属装甲板、陶瓷护片等复合系统发展的过程。
人体装甲的雏形可追溯至远古,原始民族为防止身体被伤害,曾用天然纤维编织带作为护胸的材料。武器的发展迫使人体装甲必须有相应的进步。早在19世纪末期,用在日本中世纪的铠甲上的真丝也用在了美国生产的防弹衣上。
1901年,威廉·麦肯雷总统被暗杀事件发生后,防弹衣引起了美国国会的瞩目。尽管这种防弹衣可防住低速的手枪子弹(弹速为122米/秒),但无法防住步枪子弹。于是,在第一次世界大战中,出现了以天然纤维织物为服装衬里,配以钢板制成的防弹衣。厚实的丝绸服装也一度曾是防弹衣的主要组成部分。但是,真丝在战壕中变质较快,这一缺陷加上防弹能力有限和真丝的高额成本,使真丝防弹衣在第一次世界大战中受到了美国军械部的冷落,未能普及。
第一次世界大战的防弹衣1918法国
在第二次世界大战中,弹片的杀伤力增加了80%,而伤员中70%因躯干受伤而死亡。各参战国,尤其是英、美两国开始不遗余力地研制防弹衣。1942年10月,英军首先研制成功了由三块高锰钢板组成的防弹背心。而在1943年度,美国试制和正式采用的防弹衣就有23种之多。这一时期的防弹衣以特种钢为主要防弹材料。1945年6月,美军研制成功铝合金与高强尼龙组合的防弹背心,型号为M12步兵防弹衣。其中的尼龙66(学名聚酰胺66纤维)是当时发明不久的合成纤维,它的断裂强度(gf/d:克力/旦)为5.9~9.5,初始模量(gf/d)为21~58,比重为1.14克/(厘米)3,其强度几乎是棉纤维的二倍。
朝鲜战争中,美陆军装备了由12层防弹尼龙制成的T52型全尼龙防弹衣,而海军陆战队装备的则是M1951型硬质“多隆”玻璃钢防弹背心,其重量在2.7~3.6千克之间。
第一次世界大战的防弹衣1917.英国
以尼龙为原料的防弹衣能为士兵提供一定程度的保护,但体积较大,重量也高达6千克。
70年代初,一种具有超高强度、超高模量、耐高温的合成纤维——凯夫拉(Kevlar)由美国杜邦(DuPont)公司研制成功,并很快在防弹领域得到了应用。这种高性能纤维的出现使柔软的纺织物防弹衣性能大为提高,同时也在很大程度上改善了防弹衣的舒适性。美军率先使用Kevlar制作防弹衣,并研制了轻重两种型号。新防弹衣以Kevlar纤维织物为主体材料,以防弹尼龙布作封套。其中轻型防弹衣由6层Kevlar织物构成,中号重量为3.83千克。
随着Kevlar商业化的实现,Kevlar优良的综合性能使其很快在各国军队的防弹衣中得到了广泛的应用。Kevlar的成功以及后来的特沃纶(Twaron)、斯派克特(Spectra)的出现及其在防弹衣的应用,使以高性能纺织纤维为特征的软体防弹衣逐渐盛行,其应用范围已不限于军界,而逐渐扩展到警界和政界。然而,对于高速枪弹,尤其是步枪发射的子弹,纯粹的软体防弹衣仍是难以胜任的。为此,人们又研制出了软硬复合式防弹衣,以纤维复合材料作为增强面板或插板,以提高整体防弹衣的防弹能力。
综上所述,近代防弹衣发展至今已出现了三代:第一代为硬体防弹衣,主要用特种钢、铝合金等金属作防弹材料。这类防弹衣的特点是:服装厚重,通常约有20千克,穿着不舒适,对人体活动限制较大,具有一定的防弹性能,但易产生二次破片。
第一次世界大战的防弹衣(德国)
第二代防弹衣为软体防弹衣,通常由多层Kevlar等高性能纤维织物制成。其重量轻,通常仅为2~3千克,且质地较为柔软,适体性好,穿着也较为舒适,内穿时具有较好的隐蔽性,尤其适合警察及保安人员或政界要员的日常穿用。在防弹能力上,一般能防住5米以外手枪射出的子弹,不会产生二次弹片,但被子弹击中后变形较大,可引起一定的非贯穿损伤。另外对于步枪或机枪射出的子弹,一般厚度的软体防弹衣难以抵御。第三代防弹衣是一种复合式的防弹衣。通常以轻质陶瓷片为外层,Kevlar等高性能纤维织物作为内层,是防弹衣主要的发展方向。
印度MKU公司最新研制出的新型防弹衣(Instavest),号称是目前世界上穿、脱速度最快的防弹衣。这款防弹衣的最大亮点就是能迅速穿上和脱下。它专门设计有快速拉环,只要拉动此环,整件防弹衣就能轻松脱下。据介绍,脱下该防弹衣只需1秒钟时间,穿上这款防弹衣则需要45秒。
5设计机理编辑
防弹衣的防弹机理从根本说有两个:一是将弹体碎裂后形成的破片弹开;二是通过防弹材料消释弹头的动
美军拦截者防弹衣
能。美国在二三十年代研制出的首批防弹衣是靠连在结实衣服内的搭接钢板提供防护的。这种防弹衣以及后来类似的硬体防弹衣即是通过弹开弹头或弹片,或者使子弹碎裂以消耗分解其能量而起到防弹作用的。以高性能纤维为主要防弹材料的软体防弹衣,其防弹机理则以后者为主,即利用以高强纤维为原料的织物“抓住”子弹或弹片来达到防弹的目的。
研究表明,软体防弹背心吸收能量的方式有以下五种:(1)织物的变形:包括子弹入射方向的变形和入射点临近区域的拉伸变形;(2)织物的破坏:包括纤维的原纤化、纤维的断裂、纱线结构的解体以及织物结构的解体;(3)热能:能量通过摩擦以热能的方式散发;(4)声能:子弹撞击防弹层后发出的声音所消耗的能量;(5)弹体的变形。为提高防弹能力而发展起来的软硬复合式防弹衣,其防弹机理可以用“软硬兼施”来概括。
子弹击中防弹衣时,首先与之发生作用的是硬质防弹材料如钢板或增强陶瓷材料等。在这一瞬间的接触过程中,子弹和硬质防弹材料都有可能发生形变或断裂,消耗了子弹的大部分能量。高强纤维织物作为防弹衣的衬垫和第二道防线,吸收、扩散子弹剩余部分的能量,并起到缓冲的作用,从而尽可能地降低了非贯穿性损伤。在这两次防弹过程中,前一次发挥着主要的能量吸收作用,大大降低了射体的侵彻力,是防弹的关键所在。
影响防弹衣防弹效能的因素可从发生相互作用的射体(子弹或弹片)和防弹材料两个方面考虑。就射体而言,它的动能、形状和材料是决定其侵彻力的重要因素。普通弹头,尤其是铅芯或普通钢芯弹在接触防弹材料后会发生变形。在这一过程中,子弹被消耗了相当一部分动能,从而有效地降低了子弹的穿透力,是子弹能量吸收机理的一个重要方面。
而对于炸弹、手榴弹等爆炸时产生的弹片或子弹形成的二次破片来说,情形就显着不同了。这些弹片的形状不规则,边缘锋利,质量轻,体积小,在击中防弹材料尤其是软体防弹材料后不变形。一般说来,这类碎片的速度也不高,但是量大而密集。软体防弹衣对这类碎片能量吸收的关键在于:破片切割、拉伸防弹织物的纱线并使其断裂,且使织物内部纱线之间和织物不同层面之间的相互作用,造成织物整体形变,在上述这些过程中碎片对外做功,从而消耗自身的能量。在上述两种类型的身体能量吸收过程中,也有一小部分的能量通过摩擦(纤维/纤维、纤维/子弹)转化为热能,通过撞击转化为声能。
在防弹材料方面,为了满足防弹衣要最大程度地吸收子弹及其他射体动能的要求,防弹材料必须具有强度高、韧性好、吸能能力强的性能。用于防弹衣上,尤其是软体防弹衣上的材料都以高性能纤维为主。这些高性能纤维以高强和高模为重要特征。一些高性能纤维如碳纤维或硼纤维等,虽具有很高的强度,但由于柔韧性不佳,断裂功小,难以纺织加工,以及价格高等原因,基本上不适用于人体防弹衣。
具体说来,对防弹织物而言,其防弹作用主要取决于以下方面:纤维的拉伸强力、纤维的断裂伸长和断裂功、纤维的模量、纤维的取向度和应力波传递速度、纤维的细度、纤维的集合方式,单位面积的纤维重量,纱线的结构和表面特征,织物的组织结构,纤维网层的厚度,网层或织物层的层数等。用于抗冲击的纤维材料,其性能取决于纤维的断裂能及应力波传递的速度。应力波要求尽快扩散,而纤维在高速冲击下的断裂能应尽可能提高。材料的拉伸断裂功是材料抵抗外力破坏所具有的能量,它是一个与拉伸强力和伸长变形相关的函数。
因此,从理论上说,拉伸强力越高,伸长变形能力也较强的材料,其吸收能量的潜力也越大。但在实践中,用于防弹衣的材料不允许有过大的变形,所以用于防弹衣的纤维必然同时具有较高的抵抗变形的能力,即高模量。纱线的结构对防弹能力的影响是源于不同的纱线织物会造成单纤强力利用率和纱线整体伸长变形能力的差异。纱线的断裂过程首先取决于纤维的断裂过程,但由于它是一个集合体,因此在断裂机理上又有很大的差别。纤维的细度细,则在纱中的相互抱合较为紧贴,同时受力也较为均匀,因而提高了成纱的强度。
除此之外,纱线中纤维排列的伸直平行度、内外层转移次数、纱线捻度等都对纱线的机械性能尤其是拉伸强力、断裂伸长等有重要的影响。另外,由于受弹击过程中会产生纱线与纱线、纱线与弹体的相互作用,纱线的表面特征会对以上两种作用产生或加强或削弱的效果。纱线表面油剂、水分的存在会降低子弹或弹片穿透材料的阻力,因此人们往往要对材料施行清洗和干燥等处理,并寻求提高穿透阻力的办法。
具有高拉伸强力和高模量的合成纤维通常是高度取向的,所以纤维表面光滑、摩擦系数低。这些纤维用在防弹织物中时,受弹击后纤维间传递能量的能力差,应力波不能迅速扩散,由此也降低了织物阻击子弹的能力。普通的提高表面摩擦系数的方法如起绒、电晕整理等却会降低纤维的强力,而采用织物涂层的方法则易造成纤维与纤维之间的“焊接”,结果使子弹冲击波在纱线横向发生反射,使纤维过早断裂。为了解决这一矛盾,人们想出了各种各样的方法。
美国联合信号(AlliedSignal)公司向市场推出一种空气缠绕处理纤维,通过使纤维在纱线内部相互纠缠,从而增加子弹与纤维的接触。在美国专利5035111中推出了一种通过使用皮芯结构纤维提高纱线摩擦系数的方法。这种纤维的“芯”为高强纤维,“皮”则采用了一种强力稍低而具有较高摩擦系数的纤维,后者所占的比重为5%~25%。美国另一专利5255241所发明的方法与此相似,它是在高强纤维的表面涂覆一层薄薄的高摩擦系数聚合物,以提高织物抗金属物穿透的能力。这一发明强调了涂层聚合物与高强纤维表面应有较强的粘附力,否则在受弹击时剥落的涂层材料反而会在纤维之间起固体润滑剂的作用,从而降低纤维表面摩擦系数。
除了纤维性质、纱线特征之外,影响防弹衣防弹能力的重要因素还有织物的组织结构。用于软件防弹衣上的织物结构类型包括针织物、机织物、无纬布,针刺非织造毡等。针织物具有较高的延伸率,因而有利于提高服用舒适性。但这种高延伸率用于抗冲击会产生很大的非贯穿性损伤。另外,由于针织物具有各向异性的特征,导致了在不同方向上具有不同程度的抗冲击性。所以,尽管针织物在生产成本和生产效率方面具有优势,但它一般只适用于制造防刺手套、击剑服等,而不能完全用于防弹衣上。
在防弹衣中应用较为广泛的是机织物、无纬布和针刺非织造毡。这三类织物由于其结构不同,各自的防弹机理也不尽相同,弹道学还无法给予充分的解释。一般说来,子弹击中织物后,会在弹着点区域产生一个径向的振动波,并通过纱线高速扩散。当振动波到达纱线的交织点时,一部分波将沿着原先的纱线传到交织点的另一边,另一部分转移到与之交织的纱线内部,还有一部分沿着原先的纱线反射回去,形成反射波。
在上述三种织物中,机织物的交织点最多,受弹击后,子弹的动能可通过交织点上纱线的相互作用得以传递,从而使子弹或弹片的冲击力能在较大区域内吸收。但与此同时,交织点在无形中又起了固定端的作用。在固定末端所形成的反射波与原来的入射波会产生同向叠加,使纱线受到的拉伸作用大大增强,在超过其断裂强度后断裂。另外,一些小的弹片还有可能将机织物中的单根纱线推开,从而降低了弹片穿透阻力。在一定范围内,如果提高织物密度,可以减少上述情形出现的可能,并提高机织物的强度,但却会增强应力波反射叠加的负效应。
从理论上讲,要获取最好的抗冲击性能是采用单向的、没有交织点的材料。这也正是“Shield”技术的出发点。“Shield”技术即“单向排列”技术,是美国联合信号公司于1988年推出并取得了专利的一种生产高性能非织造防弹复合材料的方法。这一专利技术的使用权也授予了荷兰DSM公司。运用这一技术制成的织物即为无纬布。无纬布是将纤维单向平行排列并用热塑性树脂粘结,同时将纤维进行层间交叉,并以热塑性树脂压制而成。子弹或弹片的大部分能量是通过使冲击点或冲击点附近的纤维伸长断裂而被吸收的。“Shield”织物可最大程度地保持纤维原有的强力,并迅速使能量分散到较大的范围上去,加工工序也较为简单。
单层的无纬布叠合后可作为软体防弹衣的主干结构,多层压制则可成为用于防弹加强插板等硬质防弹材料。如果说在上述两类织物中,大部分弹体能量是在冲击点或冲击点附近的纤维处,通过过度拉伸或刺穿使纤维断裂而被吸收的,那么对以针刺非织造毡为结构的织物的防弹机理则无法解释。因为实验已表明,在针刺非织造毡中几乎不发生纤维的断裂。针刺非织造毡由大量短纤构成,不存在交织点,几乎没有应变波的固定点反射。其防弹效果取决于子弹冲击能在毡中的扩散速度。
人们观察到,在被弹片击中以后,在碎片模拟弹(FSP)的顶端有一卷纤维状物质。于是预测,弹体或弹片在弹击初始阶段即变钝,从而使其难以穿透织物。许多研究资料都指出,纤维的模量和毡的密度是影响整个织物防弹效果的主要因素。针刺非织造毡主要用于以防弹片为主的军用防弹衣中。
Ⅱ 防弹衣的主要材质是什么
防弹衣主要由衣套和防弹层两部分组成。衣套常用化纤织品制作。
防弹层是用金属(特种钢、铝合金、钛合金)、陶瓷片(刚玉、碳化硼、碳化硅、氧化铝)、玻璃钢、尼龙(PA)、凯夫拉(KEVLAR)、超高分子量聚乙烯纤维(DOYENTRONTEX Fiber)、液体防护材料等材料,构成单一或复合型防护结构。
防弹层可吸收弹头或弹片的动能,对低速弹头或弹片有明显的防护效果,在控制一定的凹陷情况下可减轻对人体胸、腹部的伤害。
(2)关节处带钢板的手套叫什么名字扩展阅读:
1916年,德国为军队正式配发了防弹衣。这种防弹衣由硅镍合金制成,由4块缝缀在一起的合金片组成,穿在身上状似龙虾,因此被称为“龙虾甲”。“龙虾甲”同样重量过大,很影响行军和打仗,德军只能把它发给卫生兵或很少移动位置的机枪兵。
其间,美国制造出了防弹效率最高的防弹衣。这种由铬镍合金制成的防弹衣被称为“布鲁斯特护身甲”,可抵御“刘易斯”重机枪子弹,但重量高达18千克,很显然不适于步兵作战。
战争结束后,沉重、僵硬的金属防弹衣再次退出潮流,多层棉制或布制防弹衣再次大行其道。相比大战前的丝制防弹衣,棉制或布制防弹衣虽然效果有所不如,但胜在价格便宜。
Ⅲ 经常接触粉尘应该用什么手套好要可以防尘耐磨又透气的!
劳保手套:就是劳动保护手套手套是人们所熟知的手套中最古老的一种,头层牛皮、山羊皮、猪皮和绵羊皮,手套就是由以上这些皮革制成,并且不易被损坏,较长的使用寿命和精细的加工处理使得皮革手套穿戴舒适,抓紧物品精确,另外皮革手套还具有防热与绝缘性能较好的优点。
头层皮:
皮料的最外层,取自皮革的表皮部分,这种皮革不需任何机械加工与修整。
头层手套的优点:操作灵巧,舒适,抓紧性能精确。
二层皮:
皮革的内层采用剖开或除去真皮的外层而获得。
二层皮手套的优点:耐磨,适合干粗重体力劳动。
真皮的种类和它的优点
牛皮:
牛头层皮:大部分防护手套使用牛头层皮,主要从肋部刮取。特点:柔软,灵巧,舒适良好的耐磨损,抗撕裂和防穿刺能力。
牛二层皮:大部分用二层皮制作的手套被用于物品的搬运和防热用途。通常会选择用牛背部的二层皮,选择凸肩部位的较少,肋部的二层皮质量不好,一般很少用。特点:成本低于牛头层皮,耐磨性能优良。
山羊皮:
单一皮层:它的普通厚度不能拉出二层皮,它的优点在于比牛皮要轻。由于它使用原来的厚度,所以适合用来做抗机械性较好的手套,因为纤维未被割断,它的耐磨和抗穿刺性得到加强,如果经过糅制,会有更好的接触效果。特点:柔软、灵巧、良好的耐磨性,抗撕裂、防穿刺性能。它的耐磨性取决于皮革的厚度,通常使用的厚度是1.1-1.3MM(机械性能较好)或者0.6-1.0MM(柔软性和灵巧性较好)。
猪皮:
猪的头层皮和二层皮:大部分集中在亚洲国家,由于它抗机械性差并且糅制后的灵巧效果不好,所以被用于做简单隔离效果的手套。特点:价格低廉。
羊羔皮:
单一层皮:由于它的耐磨损和抗撕裂性能较差,通常情况下,仅用于制作普通手套。羊羔皮的厚度与它的灵巧性是成正比的,越薄穿戴越灵巧、舒适。特点:柔软、灵巧。
真皮的抗力情况和真皮手套的主要用途
头层皮手套:中小物体的搬运或操作。
涂油防水头层皮手套:油性零件的安装,油性钢板搬运,木工活,室外或潮湿处的工作。
二层皮手套:锋利物品、切割工作、滑性物体和焊接产品的安装、搬运。
抗热二层皮手套:发热物品、脱模和焊接的操作。
涂层二层皮手套:笨重物品、锋利物品的操作、防污。
手套皮革的特殊处理
防水皮:
用矿物油或氟化树脂处理以防止水的进入,这种处理可以改善皮革的机械性使之更加耐磨,并增加手套的舒适度(柔软性)和延展的灵巧性(感触性),而且可以延长使用寿命。
防水手套的特点:更好的灵巧性,在潮湿处使用后可以保持柔软,更长的使用寿命,使用时舒适并且动作准确。
涂油防水皮:经合成矿物油或氟化树脂处理,可以防止水和油的进入。这种处理可以改善皮革的机械性,使之更加耐磨,并增加手套的舒适感(柔软性)和延展的灵巧性(感触性),而且可以延长寿命。
防水皮手套的特点:更好的灵巧性,在油性和潮湿处使用后可以保持柔软,更长的使用寿命,动作准确。
抗热皮革:经处理使皮革更加耐热,在接触火苗时减少收缩。该处理使皮革与热源接触了便于辨认会把皮革染成黄色。这种处理也可用于头层皮。
聚胺脂涂层二层皮:
二层皮上使用PU涂层可以防水和防油进入并且改善皮革的机械性能。
缓冲振动的材料:
选择抗振动材料前,您必须知道以下信息:
振动的频率
是间歇还是持续的振动,往返式工具和旋转式工具产生的持续振动还是空气压力工具产生的持续振动。
皮革或纺织物外表:
软垫结构使手部的皮肤感觉舒适,GELFOM减振层由两层橡胶泡沫来保GELFOM减振层,这是一种理想的减弱和吸收振动的结构。
绝缘手套常用的有12千伏橡胶绝缘手套和35千伏橡胶绝缘手套.
12千伏橡胶绝缘手套性能:
橡胶绝缘手套,出厂试验电压12000V。主要用于1000V以上的高压电力设备上作为辅助安全用具。在1000V以下的低压电气设备上作为基本安全用具。
轻工行业的装配工,材料处理人员,集装箱处理人员,运送或接收货物人员,包装类,维护人员类,家庭洗衣
Ⅳ 如何制作皮革手套
损,抗撕裂和防穿刺能力。
牛二层皮:大部分用二层皮制作的手套被用于物品的搬运和防热用途。通常会选择用牛背部的二层皮,选择凸肩部位的较少,肋部的二层皮质量不好,一般很少用。特点:成本低于牛头层皮,耐磨性能优良。
山羊皮:单一皮层:它的普通厚度不能拉出二层皮,它的优点在于比牛皮要轻。由于它使用原来的厚度,所以适合用来做抗机械性较好的手套,因为纤维未被割断,它的耐磨和抗穿刺性得到加强,如果经过糅制,会有更好的接触效果。特点:柔软、灵巧、良好的耐磨性,抗撕裂、防穿刺性能。它的耐磨性取决于皮革的厚度,通常使用的厚度是1.1-1.3MM(机械性能较好)或者0.6-1.0MM(柔软性和灵巧性较好)。
猪皮:猪的头层皮和二层皮:大部分集中在亚洲国家,由于它抗机械性差并且糅制后的灵巧效果不好,所以被用于做简单隔离效果的手套。特点:价格低廉。
羊羔皮:单一层皮:由于它的耐磨损和抗撕裂性能较差,通常情况下,仅用于制作普通手套。羊羔皮的厚度与它的灵巧性是成正比的,越薄穿戴越灵巧、舒适。特点:柔软、灵巧。
真皮的抗力情况和真皮手套的主要用途头层皮手套:中小物体的搬运或操作。涂油防水头层皮手套:油性零件的安装,油性钢板搬运,木工活,室外或潮湿处的工作。二层皮手套:锋利物品、切割工作、滑性物体和焊接产品的安装、搬运。抗热二层皮手套:发热物品、脱模和焊接的操作。涂层二层皮手套:笨重物品、锋利物品的操作、防污。
手套皮革的特殊处理
防水皮:用矿物油或氟化树脂处理以防止水的进入,这种处理可以改善皮革的机械性使之更加耐磨,并增加手套的舒适度(柔软性)和延展的灵巧性(感触性),而且可以延长使用寿命。防水手套的特点:更好的灵巧性,在潮湿处使用后可以保持柔软,更长的使用寿命,使用时舒适并且动作准确。涂油防水皮:经合成矿物油或氟化树脂处理,可以防止水和油的进入。这种处理可以改善皮革的机械性,使之更加耐磨,并增加手套的舒适感(柔软性)和延展的灵巧性(感触性),而且可以延长寿命。防水皮手套的特点:更好的灵巧性,在油性和潮湿处使用后可以保持柔软,更长的使用寿命,动作准确。抗热皮革:经处理使皮革更加耐热,在接触火苗时减少收缩。该处理使皮革与热源接触了便于辨认会把皮革染成黄色。这种处理也可用于头层皮。
聚胺脂涂层二层皮:二层皮上使用PU涂层可以防水和防油进入并且改善皮革的机械性能。
缓冲振动的材料:选择抗振动材料前,您必须知道以下信息: 振动的频率是间歇还是持续的振动,往返式工具和旋转式工具产生的持续振动还是空气压力工具产生的持续振动。
皮革或纺织物外表:软垫结构使手部的皮肤感觉舒适,GELFOM减振层由两层橡胶泡沫来保GELFOM减振层,这是一种理想的减弱和吸收振动的结构。
Ⅳ 检查手套开税票的编码
61161000.99编码
合成纤维防切割手套针织|丁腈乳胶|100%涤纶,防切割手套从材质上可以分为3种。一是金属手套,由无数小圆环穿编制成。
它的作用是在使用切割机械作业的过程中,保护手部不被割伤。根据作业需要,这种防切割手套可分为三指和五指保护2种。
主要应用于肉食加工及极端机械强度作业、高切割风险工作场合。钢板整理、设备工具制造的人员戴上这种手套,能保护手部和腕部,可安全放心地操作,提高加工效率。
二是以高强聚乙烯和玻纤材料为纱线核心,以新型纤维为纱线外层的BLADEX5TM的纱线,这类材质的抗切割性更强,高强高模聚乙烯纤维(HPPE)也是一种很好的纤维抗切割材质。质轻,使用舒适,而且经过包钢丝加工,抗切割产品标准远远超过CE5级。
这种防切割手套背面没有涂层,透气舒适,同时提供理想的阻燃和切割保护,主要应用于汽车零部件装配、产品包装、电子与电气装配、轻型装配工作。
第三是材质主要以凯夫拉(Kevlar)为主的防切割手套。纤维原色为黄,强而轻巧,柔韧,以新型纤维为纱线外层的BLADEX5TM的纱线不易掉毛,见光不变色,具有卓越的耐磨性和抗切割性,其强度是同质量钢材的15倍,弹性佩戴舒适,便于清洗。
显着的特性在于超耐磨、弹性好、脱戴方便、透气舒适,不影响手部关节活动,更能有效地防止刀具、锐器对手掌、手指造成的伤害,适用于更多的行业及环境,同时也增加手套本身的功能性,例如油污环境防滑功能、防撕裂、防穿刺功能等。