1. 戴上这副手套玩VR/AR游戏,体验风雨雷电的快感
在科技发达的今天,打个游戏都要戴上VR头显,要么拿个手柄,要么戴个手套,追求那种虚拟现实的体验。
而VR手套也有了长足的进步,用户可以拥有冷热、震动、粗糙等感觉,但也仅限于几个手指。
2. vr是什么有什么用
VR的英文全称是Virtual Reality,翻译成中文名称是虚拟现实。
虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。
1.简介
虚拟现实技术是仿真技术的一个重要方向,是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合,是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。传感设备是指三维交互设备。
2.发展历史
虚拟现实技术演变发展史大体上可以分为四个阶段:有声形动态的模拟是蕴涵虚拟现实思想的第一阶段(1963年以前);虚拟现实萌芽为第二阶段(1963 -1972 );虚拟现实概念的产生和理论初步形成为第三阶段(1973 -1989 );虚拟现实理论进一步的完善和应用为第四阶段(1990 -2004 )。
3.特征
多感知性
指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知,甚至还包括味觉、嗅觉、感知等。理想的虚拟现实应该具有一切人所具有的感知功能。
存在感
指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。
交互性
指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。
自主性
指虚拟环境中的物体依据现实世界物理运动定律动作的程度。
4.关键技术
显示
人看周围的世界时,由于两只眼睛的位置不同,得到的图像略有不同,这些图像在脑子里融合起来,就形成了一个关于周围世界的整体景象,这个景象中包括了距离远近的信息。当然,距离信息也可以通过其他方法获得,例如眼睛焦距的远近、物体大小的比较等。
在VR系统中,双目立体视觉起了很大作用。用户的两只眼睛看到的不同图像是分别产生的,显示在不同的显示器上。有的系统采用单个显示器,但用户带上特殊的眼镜后,一只眼睛只能看到奇数帧图像,另一只眼睛只能看到偶数帧图像,奇、偶帧之间的不同也就是视差就产生了立体感。
声音
人能够很好地判定声源的方向。在水平方向上,我们靠声音的相位差及强度的差别来确定声音的方向,因为声音到达两只耳朵的时间或距离有所不同。常见的立体声效果就是靠左右耳听到在不同位置录制的不同声音来实现的,所以会有一种方向感。现实生活里,当头部转动时,听到的声音的方向就会改变。但目前在VR系统中,声音的方向与用户头部的运动无关。
感觉反馈
在一个VR系统中,用户可以看到一个虚拟的杯子。你可以设法去抓住它,但是你的手没有真正接触杯子的感觉,并有可能穿过虚拟杯子的“表面”,而这在现实生活中是不可能的。解决这一问题的常用装置是在手套内层安装一些可以振动的触点来模拟触觉。
语音
在VR系统中,语音的输入输出也很重要。这就要求虚拟环境能听懂人的语言,并能与人实时交互。而让计算机识别人的语音是相当困难的,因为语音信号和自然语言信号有其“多边性”和复杂性。例如,连续语音中词与词之间没有明显的停顿,同一词、同一字的发音受前后词、字的影响,不仅不同人说同一词会有所不同,就是同一人发音也会受到心理、生理和环境的影响而有所不同。
5技术应用
医学。VR在医学方面的应用具有十分重要的现实意义。在虚拟环境中,可以建立虚拟的人体模型,借助于跟踪球、HMD、感觉手套,学生可以很容易了解人体内部各器官结构,这比现有的采用教科书的方式要有效得多。
娱乐。丰富的感觉能力与3D显示环境使得VR成为理想的视频游戏工具。由于在娱乐方面对VR的真实感要求不是太高,故近些年来VR在该方面发展最为迅猛。
军事航天。模拟训练一直是军事与航天工业中的一个重要课题,这为VR提供了广阔的应用前景。美国国防部高级研究计划局DARPA自80年代起一直致力于研究称为SIMNET的虚拟战场系统,以提供坦克协同训练,该系统可联结200多台模拟器。另外利用VR技术,可模拟零重力环境,替非标准的水下训练宇航员的方法。
室内设计。虚拟现实不仅仅是一个演示媒体,而且还是一个设计工具。
房产开发。随着房地产业竞争的加剧,传统的展示手段如平面图、表现图、沙盘、样板房等已经远远无法满足消费者的需要。
工业仿真。当今世界工业已经发生了巨大的变化,大规模人海战术早已不再适应工业的发展,先进科学技术的应用显现出巨大的威力,特别是虚拟现实技术的应用正对工业进行着一场前所未有的革命。虚拟现实已经被世界上一些大型企业广泛地应用到工业的各个环节,对企业提高开发效率,加强数据采集、分析、处理能力,减少决策失误,降低企业风险起到了重要的作用。
应急推演。防患于未然,是各行各业尤其是具有一定危险性行业(消防、电力、石油、矿产等)的关注重点,如何确保在事故来临之时做到最小的损失,定期的执行应急推演是传统并有效地一种防患方式,但其弊端也相当明显,投入成本高,每一次推演都要投入大量的人力、物力,大量的投入使得其不可能进行频繁性的执行,虚拟现实的产生为应急演练提供了一种全新的开展模式,将事故现场模拟到虚拟场景中去,在这里人为的制造各种事故情况,组织参演人员做出正确响应。
游戏。三维游戏既是虚拟现实技术重要的应用方向之一,也为虚拟现实技术的快速发展起了巨大的需求牵引作用。 尽管存在众多的技术难题,虚拟现实技术在竞争激烈的游戏市场中还是得到了越来越多的重视和应用。
Web3D
Oculus Rift开拓虚拟现实游戏新时代[3]
Web3D主要有四类运用方向:商业、教育、娱乐、和虚拟社区。
道路桥梁。城市规划一直是对全新的可视化技术需求最为迫切的领域之一,虚拟现实技术可以广泛的应用在城市规划的各个方面,并带来切实且可观的利益。
地理。应用虚拟现实技术,将三维地面模型、正射影像和城市街道、建筑物及市政设施的三维立体模型融合在一起,再现城市建筑及街区景观,用户在显示屏上可以很直观地看到生动逼真的城市街道景观,可以进行诸如查询、量测、漫游、飞行浏览等一系列操作,满足数字城市技术由二维GIS向三维虚拟现实的可视化发展需要,为城建规划、社区服务、物业管理、消防安全、旅游交通等提供可视化空间地理信息服务。
教育。虚拟现实应用于教育是教育技术发展的一个飞跃。它营造了“自主学习”的环境,由传统的“以教促学”的学习方式代之为学习者通过自身与信息环境的相互作用来得到知识、技能的新型学习方式。
还有演播室、水文地质、技术培训、船舶制造、汽车仿真、轨道交通、生物力学、数字地球、虚拟现实等方面都会有很大的应用价值。
但是从现在来看,虚拟现实技术想要真正进入消费级市场,还有一段很长的路要走,包括Oculus公司在内。在Oculus内部,也对虚拟现实技术现在面对的问题进行了讨论,并且不断的在寻找解决方法。虽然所有问题最终都会找到答案,但是都不太可能在一夜之间全部解决。
目前,开发者如何为用户提供一个真正身临其境的游戏或应用体验还存在比较大的技术局限性,而一些问题到现在仍然还没有很好的解决办法。
3. VR手套能让人触碰虚拟世界,以后人类还分得清现实和虚拟吗
如果不带这些手套,就是现实世界,但如果带上的话,就是vR世界,是完全可以分清的
4. 虚拟现实硬件的交互设备
(1)数据手套
数据手套是虚拟仿真中最常用的交互工具。 数据手套设有弯曲传感器,弯曲传感器由柔性电路板、力敏元件、弹性封装材料组成,通过导线连接至信号处理电路;在柔性电路板上设有至少两根导线,以力敏材料包覆于柔性电路板大部,再在力敏材料上包覆一层弹性封装材料,柔性电路板留一端在外,以导线与外电路连接。把人手姿态准确实时地传递给虚拟环境,而且能够把与虚拟物体的接触信息反馈给操作者。使操作者以更加直接,更加自然,更加有效的方式与虚拟世界进行交互,大大增强了互动性和沉浸感。并为操作者提供了一种通用、直接的人机交互方式,特别适用于需要多自由度手模型对虚拟物体进行复杂操作的虚拟现实系统。数据手套本身不提供与空间位置相关的信息,必须与位置跟踪设备连用。
(2)力矩球
力矩球(空间求Space Ball)是一种可提供为6自由度的外部输入设备,他安装在一个小型的固定平台上。6自由度是指宽度、高度、深度、俯仰角、转动角和偏转角,可以扭转、挤压、拉伸以及来回摇摆,用来控制虚拟场景做自由漫游,或者控制场景中牧歌物体的空间位置机器方向。力矩球通常使用发光二极管来测量力。他通过装在求中心的几个张力器测量出手所施加的力,闭关将其测量值转化为三个平移运动和三个旋转运动的值送入计算机中,计算机根据这些值来改变其输出显示。力矩球在选取对象时不是很直观,一般与数据手套、立体眼镜配合使用。3
(3)操纵杆
操纵杆是一种可以提供前后左右上下6个自由度及手指按钮的外部输入设备。适合对虚拟飞行等的操作。由于操纵杆采用全数字化设计,所以其精度非常高。无论操作速度多快,他都能快速做出反应。
操纵杆的优点是操作灵活方便,真实感强,相对于其他设备来说价格低廉。缺点是只能用于特殊的环境,如虚拟飞行。
(4)触觉反馈装置
在VR系统中如果没有触觉反馈,当用户接触到虚拟世界的某一物体时易使手穿过物体,从而失去真实感。解决这种问题的有效方法是在用户交互设备中增加触觉反馈。触觉反馈主要是居于视觉、气压感、振动触感、电子触感和神经肌肉模拟等方法来实现的。向皮肤反馈可变点脉冲的电子触感反馈和直接刺激皮层的神经肌肉模拟反馈都不太安全,相对而言,气压式和振动触感是是较为安全的触觉反馈方法。
气压式触摸反馈是一种采用小空气袋作为传感装置的。它由双层手套组成,其中一个输入手套来测量力,有20~30个力敏元件分布在手套的不同位置,当使用者在VR系统中产生虚拟接触的时候,检测出手的各个部位的手里情况。用另一个输出手套再现所检测的压力,手套上也装有20~30个空气袋放在对应的位置,这些小空气袋由空气压缩泵控制其气压,并由计算机对气压值进行调整,从而实现虚拟手物碰触时的触觉感受和手里情况。该方法实现的触觉虽然不是非常的逼真,但是已经有较好的结果。
振动反馈是用声音线圈作为振动换能装置以产生振动的方法。简单的换能装置就如同一个未安装喇叭的声音线圈,复杂的换能器是利用状态记忆合金支撑。当电流通过这些换能装置时,它们都会发生形变和弯曲。可能根据需要把换能器做成各种形状,把它们安装在皮肤表面的各个位置。这样就能产生对虚拟物体的光滑度、粗糙度的感知。
(5)力觉反馈装置
力觉和触觉实际是两种不同的感知,触觉包括的感知内容更加丰富如接触感、质感、纹理感以及温度感等;力觉感知设备要求能反馈力的大小和方向,与触觉反馈装置相比,力反馈装置相对成熟一些。目前已经有的力反馈装置有:力量反馈臂,力量反馈操纵杆,笔式六自由度游戏棒等。其主原理是有计算机通过里反馈系统对用户的手、腕、臂等运动产生阻力从而使用户感受到作用力的方向和大小。
由于人对力觉感知非常敏感,一般精度的装置根本无法满足要求,而研制高精度里反馈装置又相当昂贵,这是人们面临的难题之一。
(6)运动捕捉系统
在VR系统中为了实现人与VR系统的交互,必须确定参与者的头部、手、身体等位置的方向,准确地跟踪测量参与者的动作,将这些动作实时监测出来,以便将这些数据反馈给显示和控制系统。这些工作对VR系统是必不可少的,也正是运动捕捉技术的研究内容。
到目前为止,常用的运动捕捉技术从原理上说可分为机械式、声学式、电磁式、和光学式。同时,不依赖于传感器而直接识别人体人体特征的运动捕捉技术也将很快进入实用。
从技术角度来看,运动捕捉就是要测量、跟踪、记录物体在三维空间中的运动轨迹。
(7)机械式运动捕捉
机械式运动捕捉依靠机械装置来跟踪和测量运动轨迹。典型的系统由多个关节和刚性连杆组成,在可转动的关节中装有角度传感器,可以测得关节转动角度的变化情况。装置运动是,根据角度传感器所测得的角度变化和连杆的昂度,可以得出杆件末端点在空间中的位置和运动轨迹。实际上,装置上任何一点的轨迹都可以求出,刚性连杆也可以换成长度可变的伸缩杆。
机械式运动捕捉的一种应用形式是将欲捕捉的运动物体与机械结构相连,物体运动带动机械装置,从而被传感器记录下来。这种方法的优点是成本低、精度高、可以做到实时测量,还可以允许多个角色同时表演,但是使用起来非常不方便,机械结构对表演者的动作的阻碍和限制很大。
(8)声学运动捕捉
常用的声学捕捉设备由发送器、接收器和处理单元组成。发送器是一个固定的超声波发送器,接收器一般由呈三角形排列的三个超声波探头组成。通过测量声波从发送器到接收器的时间或者相位差,系统可以确定接收器的位置和方向。
这类装置的成本较低,但对运动的捕捉有较大的延迟和滞后,实时性较差,精度一般不很高,声源和接收器之间不能有大的遮挡物,受噪声影响和多次反射等干扰较大。由于空气中声波的速度与大气压、湿度、温度有关,所以必须在算法中做出相应的补偿。
(9)电磁式运动捕捉
电磁式运动捕捉是比较常用的运动捕捉设备。一般由发射源、接受传感器和数据处理单元组成。发射源在空间按照一定时空规律分布的电磁场;接受传感器安置在表演者沿着身体的相关位置,随着表演者在电磁场中运动,通过电缆或者无线方式与数据处理单元相连。
它对环境的要求比较严格,在使用场地附近不能有金属物品,否则会干扰电磁场,影响精度。系统的允许范围比光学式要小,特别是电缆对使用者的活动限制比较大,对于比较剧烈的运动则不适用。
(10)光学式运动捕捉
光学式运动捕捉通过对目标上特定光点的监视和跟踪来完成运动捕捉的任务。目前常见的光学式运动捕捉大多数居于计算机视觉原理。从理论上说,对于空间中的一个点,只要他能同时被两个相机缩减,则根据同一时刻两个相机所拍摄的图像和相机参数,可以确定这一时刻该点在空间中的位置。当相机以足够高的速率连续拍摄时,从图像序列中就可以得到该店的运动轨迹。
这种方法的缺点就是价格昂贵,虽然可以实时捕捉运动,但后期处理的工作量非常大,对于表演场的光照、反射情况有一定的要求,装置定标也比较繁琐。
(11)数据衣
在VR系统中比较常用的运动捕捉是数据衣。数据衣为了让VR系统识别全身运动而设计的输入装置。他是根据‘数据手套’的原理研制出来的,这种衣服装备着许多触觉传感器,穿在身上,衣服里面的传感器能够根据身体的动作探测和跟踪人体的所有动作。数据衣对人体大约50个不同的关节进行测量,包括膝盖、手臂、躯干和脚。通过光电转换,身体的运动信息被计算机识别,反过来衣服也会反作用在身上产生压力和摩擦力,使人的感觉更加逼真。
和HMD,数据手套一样数据衣也有延迟大、分辨率低、作用范围小、使用不便的缺点,另外数据衣还存在着一个潜在的问题就是人的体型差异比较大。为了检测全身,不但要检测肢体的伸张状况,而且还要检测肢体的空间位置和方向,这需要许多空间跟踪器。
5. Meta公司推出让你‘感受’虚拟物品的手套
近日马克扎克伯格展示了一种新设备,有望为他的虚拟现实元宇宙铺平道路:一种可以让你感受虚拟物体的触觉手套。
手套看起来像科幻电影中的机器人拥有的机械手臂, 该手套配备了数百个执行器和微型电机,可以在你的手上传递触摸的感觉。它还可以将你的手指锁定在某个位置--例如,如果你在VR世界中抓住一个球或触摸一个硬表面。
"为了实现这种体验,并将触觉带入元空间(VR虚拟世界),该团队正在开发触觉手套:一款舒适和可定制的手套,帮助你在虚拟世界中重现一系列的感觉,包括纹理、压力和振动,"据报道Meta,这家公司的前身是Facebook。
目前该项目面临的主要挑战是技术的限制。例如,传统的机械执行器可能很重,戴在手套上会产生过多的热量。因此,Meta的现实实验室一直在开发由较软的柔性材料制成的执行器。现在 科技 的发展以及技术的进步还不能完全满足该手套的需求,相信未来会逐渐解决这一问题。
Meta公司报道说:在过去两年中,实验室在气动执行器(利用气压产生力)和电动力执行器(在有电场的情况下改变形状或大小)方面都取得了重大突破。手套上的一个小型 "微流控芯片 "也能控制流经执行器的气流。
上周,Meta公司联合扎克伯格上传了该技术的几个操作视频。然而,该公司指出,该手套不能完全重现现实世界的物理感觉。相反,该系统可以在适当的时候提供足够的反馈,以欺骗你的大脑,使其认为一个虚拟物体在你手中。
"触觉手套甚至可以让佩戴者的感知系统相信它正在感受一个物体的重量,通过用致动器轻轻拉动佩戴者的手指皮肤来模仿重力对所持物体的拉扯。但这一切都必须在时间上完全正确,"Meta的现实实验室说。
这个手套原型是该公司长期愿景的一部分,即创造一个虚拟现实世界,有朝一日取代互联网。据扎克伯格称,元空间甚至可以取代我们在现实世界中做的事情,如参加音乐会和运动。但为了实现这一目标,Meta公司将需要一系列突破性的技术,能够使VR互动感觉更像生活。
目前还没有关于Meta何时向VR用户发布触觉手套的消息。但目标是有一天将手套与VR头盔和增强现实眼镜配对。
"该公司补充说:"我们的触觉手套项目开始时是一个月球射击,但随着我们不断创新和完成研究,它的可行性越来越高。
开发这些手套的工作仍处于研究过程的早期阶段,随着它们变得更加实用,Meta公司希望出售这些手套,允许用户将它们与VR头显或AR眼镜配对。