① 塑料粉碎机具体操作
分类
塑料粉碎机在注塑行业中又名:塑料破碎机。其中分三大类:(一) 硬塑料粉碎机,本机适合粉碎各类中小型塑料板材:1、ABS、PE、PP板等板材粉碎回收;2、针对板材料粉碎而独特设计的长方型投料口,便于长条型板材投入粉碎,提高工作效率。可选配吸料风机、储料桶组成板材粉碎回收系统可更加充分发挥回收效率;3、采用密封轴承,使轴承转动长时间保持良好;刀型设计合理,产品成粒均匀;刀座热缩处理,外形设计美观大方;(二)强力塑料粉碎机:1、片型刀结构介于爪刀、平刀之间,适合破碎普通片材、管材、型材、板材及包装材料等塑料制品;2、通用型塑料粉碎机,采用密封轴承,使轴承转动长时间保持良好;3、刀型设计合理,采用合金钢刀片,产品成粒均匀,刀座热缩处理,且经过严格的平衡测试,外形设计美观大方;(三)塑料管材塑料粉碎机:1、适合粉碎各类中小型塑料管材,如PE、PVC管、硅芯管等管材粉碎回收;2、针对管材料粉碎而独特设计的圆管型投料口,便于长条型管材投入粉碎,提高工作效率。可选配吸料风机、储料桶组成管材粉碎回收系统可更加充分发挥回收效率;3、采用密封轴承,使轴承转动长时间保持良好;刀型设计合理,产品成粒均匀;刀座热缩处理,外形设计美观大方。
操作注意事项
1、塑料粉碎机与动力机组要安装牢固。若需要塑料破碎机长期固定作业,应将其固定在水泥基础上;若需要塑料破碎机流动作业,机组应安装在用角铁制成的机座上,并且保证动力机(柴油机或电动机)和塑料破碎机的皮带轮槽处于同一回转平面。2、塑料粉碎机安装完后要检查各部紧固件的紧固情况,若有松动要给予以拧紧。同时要检查皮带松紧度是否合适。3、塑料粉碎机起动前,先用手转动转子,检查一下齿爪、锤片及转子运转是否灵活可靠,破碎室内有无碰撞现象,转子的旋转方向是否与机箭头所指方向一致,动力机及塑料破碎机润滑是否良好。4、不要随便更换皮带轮,以防转速太高致使破碎室产生爆炸,或转速太低影响粉碎机的工作效率。5、塑料粉碎机起动后应保持其先空转2~3min,没有异常现象后再投料工作。6、工作中要随时注意塑料粉碎机的运转情况,首先,送料要均匀,以防阻塞碎料室;其次,不要长时间超负荷工作。若发现有振动、杂音、轴承与机体温度过高,向外喷料等现象,应立即停机检查,排除故障后方可继续工作。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
② 简述fdm工艺的特点
1 FDM技术的原理及特点
利用三维建模软件生成实体模型,生成立体印刷的STL文件,然后将实体模型导入切片软件(如Cura或者其他开源软件)进行分层切片获取每层的截面轮廓,生成3D打印机可以识别的G代码,而后设备控制器据此信息控制驱动喷头加热、步进电机自动挤料系统等固件,由喷嘴挤出一层接一层的热熔材料,形成一系列具有一个微小厚度的片状实体,再采用粘接、熔接、聚合等手段将连续的薄型层面逐层堆叠成一体,便可以制造出所设计的新产品样件、模型或者模具。FDM技术原理如图1所示。
FDM技术和其它3D打印技术一样,都是基于层层堆积成型原理,但它还具备以下几个特点:
1)系统构造和原理简单,其主要采用的是热熔型喷头挤出成型,运行维护费用低,设备成本远低于激光和等离子等高能束加热装置成型的方法;
2)使用材料无毒环保,适宜在办公室环境安装使用;
3)可以成型任意复杂程度的零件,产品设计与生产并行,根据零件的具体形状和要求,适时改变成型工艺参数,从而控制成型质量;
4)成型过程无化学变化,制件的翘曲变形小;
5)原材料的利用率高,且材料的寿命较长;
6)可直接制作彩色的模型。
2 FDM技术成型质量分析
与传统的加工技术追求的目标相同,加工件的精度与成型质量一直也是FDM技术的关键所在。FDM的过程包含模型的前处理,成型加工以及成型件的后处理。在整个的成型过程中,针对各个因素产生的误差对成型质量的影响,参照传统的加工技术对成型质量的评价,对FDM技术成型质量分析将从FDM技术的成型件的尺寸精度、形状精度和表面粗糙度三个方面进行。
2.1 尺寸精度
尺寸精度是表征成型质量好坏最为直接也是最重要的性能指标。尺寸精度越低,则成型质量就越差。成型件的精度直接影响其是否能够使用,超出成型件的误差,可直接视为废品或者次品,将不能够进行应用。因此,对尺寸精度的分析是分析FDM成型质量的关键一步。影响FDM成型件尺寸精度的最主要因素是成型材料的收缩产生的误差、后处理误差以及成型过程中的工艺参数设置造成的误差。
2.1.1 成型材料的收缩产生的误差
由FDM技术的成型原理可知,其成型材料需加热成熔融态,再由喷头挤出在工作台,然后冷却固化成型,在这一过程中,其实成型材料经历了由固态到熔融态再回到固态的物理变化过程,而期间所发生的主要是热收缩。
热收缩(Thermal shrinkage)主要是指热塑性材料(ABS、石蜡等)因其固有的热膨胀率而产生的体积变化,它是收缩产生的最主要原因。由热收缩引起的收缩量为:
ΔL=δ*L*ΔT
其中,δ为材料的线膨胀系数,/℃;L为零件X/Y向尺寸,mm;ΔT为温差,℃。
上式的δ为材料在理想环境中的线膨胀系数,然而成型材料的实际收缩还会受到其成型件的形状、成型尺寸以及成型过程中的工艺参数设置等因素单独或交互制约,因此,必须通过实验得出一个相对可靠的δ1,才能准确的估算出成型件的收缩量,从而在FDM成型前期的三维建模过程对材料收缩的尺寸进行补偿,以期得到尺寸精度较高的成型件。
2.1.2 后处理误差
成型件在打印完成以后还需要进行相应的后处理,一般有物理法和化学法。物理的方法一般包含:对支撑结构的机械剥离,对表面进行修补、打磨、抛光和表面处理;化学法是用一些有机溶剂和成型材料进行有机反应,生成表面光洁度较高的另一种物质,从而改善FDM直接成型件的表面粗糙度差的问题。现在比较成熟的FDM成型材料主要是ABS和PLA。对于ABS工程材料,一般是用丙酮溶液或者丙酮蒸汽熏蒸,通过控制反应的时间来改善其表面质量。而PLA则采用的是氯仿溶液浸泡的方法,在处理过程中需严格控制浸泡的时间才能达到最佳的处理效果。无论是采用物理法还是化学法,都不可避免的带来一些新的误差,这些误差严重的影响了成型件的尺寸精度,这也是不可忽略的。
2.1.3 工艺参数设置造成的误差
影响FDM成型精度的因素很多,有层厚、喷嘴直径、打印温度、平台温度、打印速度、填充速度、填充率等工艺参数,在这之前许多学者已经对上述工艺参数的含义进行了详细的阐述,这里不再赘述。其中打印温度、打印速度及层厚是决定成型精度的最重要的3个因素,三者之间的合理搭配是获得高精度成型件的关键。
打印温度是指喷头的加热温度,是决定喷头能否顺利挤出的关键参数。基于不同的FDM成型材料的性能,喷头的温度必须保持在成型材料的融化温度稍高的温度,使成型材料达到粘接性和流动性的最优化,并配合挤出速度均匀挤出在加热平台上,否则会导致堵头或者出丝不均的现象,从而使尺寸精度大大下降。
打印速度是直接影响打印精度和效率的因素。打印速度越快,则喷头运动越快,打印的精度就越低;反之打印精度就越高。这仅是单一的线性关系,必须和喷头的挤出速度相匹配,使其在一个合理的范围之内,避免挤出速度过快而运动过慢成型材料挤出相对过多,导致喷头堵塞,或者运动速度过快而挤出速度过慢造成成型件翘曲变形甚至开裂,严重的导致成型材料不足无法完成打印过程。
层厚是模型在进行切片处理时每一层的厚度,一般是0.1mm,0.2mm,0.3mm。层厚越小,则尺寸精度就越高,成型件的质量就越好,但总的打印层数会成倍增加,反过来又导致成型效率下降,因此,一般选择0.2mm的层厚,是成型效率和成型质量综合效果最优化值。
2.2 形状精度
形状精度是限制加工表面的宏观几何形状误差的量度,如圆度、圆柱度、平面度、直线度。在FDM技术中,引起成型件形状误差的主要因素就是成型设备的误差。成型设备主要指的是设备的机械模块,其为成型过程的基础元件,其硬件设备的精度直接影响到成型精度。成型过程中主要包含喷头沿XOY面的扫面运动及工作平台的Z向运动。XY面的平面度及其与导轨的垂直度会影响成型件的形状精度。步进电机与皮带的配合度及皮带的松紧度都会影响成型件的形状。皮带过松可能造成喷头运动的周期性失步,从而大大降低成型件的形状精度。
2.3 表面粗糙度
表面粗糙度是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。影响FDM成型件的表面粗糙度的主要误差是模型在切片处理误差和模型导出为STL文件格式的误差。
2.3.1 切片处理误差
FDM技术原理是利用分层叠加的成型方法,是一个离散/堆积的过程。它是通过沉积一层一层的切片来形成三维零件,只有保证了每一切片层的信息准确性,才能得到成型质量高的三维零件。而一个零件的模型数据在每一层的轮廓形状不尽相同,大多数的模型都为曲面或者过度表面,这就需要通过分层去逼近模型的实际表面,这就好比是一个数学上的积分的过程,用无限个小的矩形块逼近曲面的面积,但最终会形成“台阶效应”(如图2),这是3D 打印成型过程的一种原理性误差。在对STL文件进行切片时,会破坏零件表面的连续性,丢失了层与层之间的数据,同时引入阶梯误差,大大增大零件的表面粗糙度。对于曲面曲率变化大的模型表面,“台阶效应”存在更加明显,这样就会直接导致是曲面精度质量降低,模型表面的精度误差也增大。
2.3.2 模型导出为STL文件时的误差
在完成三维建模之后,需要将所建立的三维模型导出成3D打印通用的STL文件格式。而在文件格式转换的过程中,不同数据格式的选择决定数据处理的流程和方法的不同。STL 格式,是由无数个小三角形面片的定义组成,每个小三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。采用小三角形来近似逼近三维 CAD模型的外表面,小三角形数量的多少直接影响着近似逼近的精度。三角网格越小,其精度越高,数据丢失率就越低,成型效果就比较好。但只要是数据转换就可能造成数据的丢失,使得模型在未成型之前其表面粗糙度就受到影响,且丢失越多给后续的修复工作无形中增添了工作难度。
3 提高FDM技术成型质量的方法
鉴于FDM过程中各阶段的误差对制件成型质量的影响,提高制件成型质量是FDM技术必然需求。在模型处理前期,采用对CAD实体模型直接进行切片的方法消除因 STL文件格式所导致的截面轮廓线误差以得到精确完整的实体截面轮廓线。优化切片过程,改进切片算法,消除因切片可能导致轮廓冗余、轮廓线不清等问题。在构造模型时尽可能地规避斜面的设计,设置合适的层厚以减少台阶效应。注意制件在切片时的摆放位置和方向,优化结构,减少或者避免过多的支撑,提高成型质量同时也减小了成型的时间。
在成型过程中,优化工艺参数。针对制件的大小、形状等不同,得出不同的工艺参数以更好地提高成型件的精度和质量。
选择合理的后处理工艺,防止刮伤甚至是破坏工件,以保证处理后制件的精度。